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Abstract

We have developed pOSKI: the Parallel Optimized Sparse
Kernel Interface — an autotuning framework to optimize
Sparse Matrix Vector Multiply (SpMV) performance on
emerging shared memory multicore architectures. Our
autotuning methodology extends previous work done in
the scientific computing community targeting serial archi-
tectures. In addition to previously explored parallel opti-
mizations, we find that that load balanced data decompo-
sition is extremely important to achieving good parallel
performance on the new generation of parallel architec-
tures. Our best parallel configurations perform up to 9x
faster than optimized serial codes on the AMD Santa Rosa
architecture, 11.3x faster on the AMD Barcelona architec-
ture, and 7.2x faster on the Intel Clovertown architecture.

1 Introduction

A plethora of new multicore architectures have flooded
the electronics industry in devices ranging from cell
phones to supercomputers. In order to fully unleash the
potential of this unprecedented scale of parallelism, it is
essential that the scientific computing community develop
multicore-specific optimization methodologies for impor-
tant scientific computations in ways that are accessible to
the greater community.

We have developed pOSKI: the Parallel Optimized
Sparse Kernel Interface — an autotuning framework for
the sparse matrix-vector multiply kernel on multicore ar-
chitectures, which is an important kernel in many appli-
cations. For Krylov subspace methods such as Conjugate
Gradient, SpMV often is one of the two major bottlenecks
and accounts for the majority of the runtime. Historically,
this kernel has run at 10% or less of peak performance
and thus represents an opportunity to make significant im-
provements.

Our framework targets multicore architectures and in-
cludes many of the optimizations presented in previous
work done at UC Berkeley [24]. We have designed our
system hierarchically, much like the architectures we tar-
get. This enables us to implement optimizations at each
layer that target different architectural features.

Although our system has been built to be adaptable to
architectural parameters, we focus on four dual socket ar-
chitectures for the rest of this paper:

e AMD Opteron 2214 (Santa Rosa) (dual socket x dual
core)

e AMD Opteron 2356 (Barcelona) (dual socket x quad
core)

e Intel Xeon E5345 (Clovertown) (dual socket x quad
core)

This report makes the following contributions and con-
clusions:

o We have extended the Optimized Sparse Kernel In-
terface (OSKI) [20] framework with a set of serial
optimizations that can benefit current users of OSKI.
These users use OSKI to perform sparse linear alge-
bra on serial architectures.

e We have incorporated the most important subset of
the optimizations explored in [24] into the pOSKI
layer.

o We demonstrate the value of a search over multiple
data decompositions across the available threads. We
show how a good decomposition can improve per-
formance by more than 20% compared to a naive de-
composition and justify an exhaustive search in this
space.

e We present an offline parallel benchmark that en-
ables us to optimize the performance of our run time
heuristic-based framework up to 23% higher than
previous implementations.

e We have developed an MPI layer on top of pOSKI
in order to explore optimizations that are possible
on distributed memory multinode multicore architec-
tures.

After explaining SpMV in Section[2]and autotuning for
SpMV in Section 3| we present pOSKI in Section[d To
complement pOSKI, which targets shared memory archi-
tectures, we explain our distributed memory implementa-
tion that is built on top of pOSKI using MPI in Section 3]
We present our experimental setup in Section [6] and the
results of our experiments in Section [/} Finally, we con-
clude in Section [§] and discuss future directions in Sec-
tion

2 SpMYV Overview

SpMV lies at the heart of a diverse set of applica-
tions in many fields, such as scientific computing, engi-
neering, economic modeling, and information retrieval.
Sparse kernels are computational operations on matrices
whose entries are mostly zero (often 99% or more), so
that operations with and storage of these zero elements
should be eliminated. The challenge in developing high-
performance implementations of such kernels is choosing



Figure 1: Compressed Sparse Row Data Structure Format

the data structure and code that best exploits the structural
properties of the matrix (generally unknown until appli-
cation run-time) for high-performance on the underlying
machine architecture (e.g., memory hierarchy configura-
tion and CPU pipeline structure). Given that conventional
implementations of SpMV have historically run at 10%
or less of peak machine speed on cache-based superscalar
architectures as well as the success of autotuners in this
domain [19], there is a need to develop autotuning frame-
works targeting the current and next generations of multi-
core architectures.

Most sparse matrix storage data structures do not store
the explicit 0’s. While dense matrices are often stored
in a single contiguous array, studies using the Sparsekit
package [17] have shown that an efficient format to
store sparse matrices is the Compressed Sparse Row
(CSR) format. We use this format for our naive SpMV
implementation and compare our optimized codes against
kernels that operate on matrices stored in this format.
We discuss the CSR Data Structure and Algorithm in the
following subsection.

The Compressed Sparse Row (CSR) Storage

The CSR data structure stores only the entries of a ma-
trix that are nonzero in a contiguous array, val, as well
as two auxiliary indexing arrays that aid in the SpM xV
calculation. This is illustrated in Figure[I] The ind array
represents the index of the column (in the original matrix)
that each corresponding val array entry is in. The length
of ind and value arrays equals the number of non-zero el-
ements in the matrix. The third array, ptr, points to the
elements in the ind and val arrays that represent the start
of a new row. Thus, length of the ptr array equals the
number of rows in the matrix plus one(the last element
stores the total number of nonzeros in the matrix).

Algorithm [I] traverses the CSR Data Structure de-
scribed above in order to compute the SpMV. The code
optimizations presented in Section @] build upon this code.

Algorithm 1 Compressed Sparse Row Algorithm
Require:
Require:

val: nonzero values in A
ind: column indices of values in A
Require: ptr: pointers to row starts in A
Require: z: source vector array
Require: y: destination vector array
Ensure: Yfinal = Yinitial + A X T

1: for all row ¢ do

2: temp; <+ 0
3 for j=ptr[] to ptr[i + 1] - 1 do
4 temp; < temp; + val[j] X x[ind[j]]
5.  end for
6:  y[i] — y[i] + temp;
7: end for

3 Autotuning

Previous studies have shown that it is not always effi-
cient to hand-tune kernels for each architecture/dataset
combination because an optimization for one combination
might hurt performance for another one [3} 5} 13} [16} 22].
Current generation compiler-optimized code is not al-
ways tuned for architecture or datasets. It is based on
generic assumptions and therefore under specific archi-
tectures and datasets leads to suboptimal performance.

Over the last decade, researchers have found that per-
forming an empirical search over the possible combina-
tions of algorithms and data structures for a given ker-
nel can be used along with heuristics to find optimal
or nearly(within 90% of) optimal codes. Although the
cost of tuning can be expensive, once chosen, a kernel
may be used thousands of times. The class of frame-
works that support such a search have come to be known
as autotuners. Autotuners provide a portable and effec-
tive method for tuning over the plethora of optimizations
available on today’s architectures. Autotuners have a
proven track record in the HPC community. Examples
of successfully released autotuners include ATLAS [22],
FFTW [5]], OSKI [20]] and Spiral [16].

The remainder of this section presents the state of the



autotuning space with respect to SpMV.

3.1 Serial SpMYV Autotuners

The Optimized Sparse Kernel Interface (OSKI) [20] is
a widely used autotuner for sparse linear algebra today.
OSKI is a collection of low-level primitives that provides
automatically tuned computational kernels on sparse ma-
trices, for use by solver libraries and applications. The
current implementation targets cache-based superscalar
uniprocessor machines. Although OSKI provides opti-
mized codes for Sparse Triangular Solve as well as SpMV,
in our work, we only optimize SpMV execution.

The most important optimization within OSKI is regis-
ter blocking. This converts the CSR format described in
Section2]into a blocked CSR (BCSR) format. This trans-
formation is briefly described in Appendix [A] A more de-
tailed treatment on this format as well as its benefits can
be found in [19]].

OSKI was developed by Richard Vuduc [19]. We mod-
ify this serial codebase in order to enable a parallel layer
on top of it that is aware of non-uniform memory access
(NUMA) times that are common on many of today’s mul-
ticore architectures. We also add algorithms to OSKI’s
search space, that explicitly prefetch data through archi-
tecture specific intrinsics. The motivation behind these
optimizations as well their implementations are discussed
in Section

3.2 Parallel SpMYV Autotuners

While there has been significant work with serial auto-
tuners for SpMV, there is currently no parallel autotuner
for SpMV that is optimized for modern multicore archi-
tectures. There has been work presenting optimized mul-
tithreaded SpMV codes [24]] but no library that can be
used by an application writer in order to efficiently use
the underlying architecture.

The next section presents pOSKI — a parallel library
that is built on top of OSKI to provide an optimized frame-
work for performing SpMVs on various architectures.

4 pOSKI

pOSKI provides a serial interface to the user in order to
provide the user with functions to break the matrix into
blocks that can be run on multiple threads, cores, or sock-
ets and subsequently tune kernels that are specific to the
matrix and architecture. This interface implicitly exploits
the parallelism present in the kernels. The primary aim of

this interface is to hide the complexity of parallelizing and
tuning operations to intelligently use the available sockets,
cores and threads within one node to efficiently utilize the
available memory bandwidth.

The interface is designed to hide the underlying par-
allelism. Each serial-looking function call that the user
makes triggers a set of parallel events. pOSKI manages
its own thread pool and manages the appropriate thread
and data affinities in order to maximize performance.

pOSKI targets a shared memory architecture and uses
a Pthreads execution model. Each thread has access to
data from all other threads. Explicit synchronization, us-
ing barriers, is needed in order to guarantee correct exe-
cution.

Many of the optimizations incorporated within pOSKI
are inspired by previous work done by S. Williams et
al. [24] and R. Vuduc [19]. These optimizations include
register blocking, cache blocking, software prefetching,
software pipelining, and loop unrolling.

SpMV performance is dependent on many factors in-
cluding loop overhead, memory bandwidth, memory la-
tency and instruction level parallelism. These correspond
to the nested loop structure, streaming nonzeros, the aver-
age cost for an indirect access and the flop-to-byte ratio.
In the following sub-sections, we present optimizations
through which we try to improve the use of the available
memory bandwidth by masking the costs associated with
bringing a value from the caches to the registers as well
as from the main memory to the caches. The code seg-
ments provided in this section modify the CSR Algorithm
shown in Algorithm[I] In our experiments, we apply these
techniques to all the blocked version of the code as well.

Table |1{ summarizes all the optimizations performed in
our system and the software layer where they are imple-
mented. In Table (I} OSKI 1.0.1h represents the latest re-
lease of OSKI while OSKI 1.1 represents the version of
OSKI that we have developed (i.e. OSKI 1.0.1h with new
optimizations). pOSKI refers to the Pthread layer built on
top of OSKI 1.1, MPI-Layer refers to layer built on top of
pOSKI. Appendix [B| details the pOSKI API. Finally, we
present the optimizations presented in Williams, et al. [[24]
for comparison.

4.1 Serial Optimizations

The set of optimizations described in this section are ap-
plied at the serial OSKI layer. While register blocking and
cache blocking were available in OSKI version 1.0.1h, we
add explicit software prefetching to OSKI’s search space.
In addition, we extend OSKI’s internal representation of
each matrix to include matrix-specific allocators and deal-



’ No. \ Optimization OSKI 1.0.1h | OSKI 1.1 \ pOSKI \ MPI-pOSKI | Williams et.al. [24]
1. Register Blocking v v v
2. Cache Blocking v v v
3. Software Prefetching v v
4. Serial Benchmarking v v
5. Data Decomposition within Shared Memory v v
6. NUMA Aware Allocation v v v
7. Parallel Benchmarking v
8. Matrix Compression W) v
9. SIMDization V) v
10. Software Pipelining ) v
11. TLB Blocking ) v
12. | Data Decomposition across Distributed Memory v
13. Overlap of Computation and Communication W)

14. Array Padding W) v

Table 1: Optimizations Implemented: optimizations checkmarked within parenthesis are not yet implemented. Op-
timizations 1-4 are serial (applied at OSKI layer: described in Section {.1), optimizations 5-11 are shared memory
parallel (applied at pOSKI layer:described in Section .2) and optimizations 12-14 are distributed memory parallel

(applied at MPI-pOSKI layer:described in Section [5).

locators in order to enable NUMA-Aware allocation (Sec-
tion 4.2.3). Register blocking and cache blocking were
first presented in [7] but OSKI was the first distributed
autotuning library that incorporated them.

Due to the time constraints for this project, we
present, but do not implement explicit software pipelin-
ing, SIMDization, index compression and array padding.
For the optimizations we do not implement, we present
the performance gains as reported by [24]. We chose to
implement the optimizations in order of decreasing per-
formance improvement (as presented in [24]]).

4.1.1 Register Blocking

The register blocking optimization is implemented
through the Blocked CSR (BCSR) format and algorithm.
BCSR is designed to exploit naturally occuring dense
blocks by reorganizing the matrix data structure into a se-
quence of small (enough to fit in register) dense blocks.
Only one set of indices is needed per block rather than per
non-zero as is the case for the CSR format. This benefit
does, however, come at the cost of adding explicit zeros
to the matrix storage structures. Appendix [A] describes
the BCSR format and algorithm in detail. An important
point to note is that OSKI does not perform an exhaustive
search over all register blockings on the runtime matrix.
Instead, it benchmarks a fixed matrix (currently chosen to
be dense) stored in sparse format at install time. At run-
time, OSKI picks the register blocking based on a perfor-
mance estimation heuristic that compares the fill ratios of
the runtime matrix with that of the benchmarked matrix.

4.1.2 Cache Blocking

Cache blocking reorders memory accesses in an effort to
keep the working set of the source vector in cache and
thus increase temporal locality. In contrast, register block-
ing compresseses the data structure in an effort to reduce
memory traffic. The increased locality comes at the cost
of maintaining more complex data structures — an extra
set of row pointers is needed to maintain the start of each
cache block. Nishtala et al. [14] showed that this opti-
mization helps performance significantly but only for a
small class of matrices.

4.1.3 TLB Blocking

[15] highlighted the importance of TLB blocking show-
ing how TLB misses can vary by an order of magnitude
depending on the blocking strategy. [24] limited the num-
ber of source vector cache lines touched in a cache block
by the number of unique pages touched by the source vec-
tor to 4KB pages on the three x86 architectures and to
256MB pages on the Niagara2 based architecture. We
leave this optimization at the OSKI layer to future work.

4.1.4 Software Prefetching

The last serial optimization we present is explicit software
prefeching using machine specific intrinsics. Intrinsics
allow access to all operations normally available to as-
sembly language programmers for the target architecture
through a higher level interface.

We use these instructions to prefetch the values of



matrix-entries and column-indices that are needed next
within the inner loop of the (B)CSR Algorithm. This op-
timization aims at masking the memory-to-cache latency
that exists. While a compiler based prefetch is predictive
and usually does not evict values out of the highest lev-
els of cache, an intrinsic based prefetch is declarative and
allows the programmer to prefetch values into the highest
cache levels. The reason for this difference is because a
programmer’s instrinsic is not treated as a prediction; it is
treated as a statement.

The intrinsics available on each machine are differ-
ent and the options available vary as well. Williams,
et.al. [24]], found that the optimal prefetch distance for
the two arrays is matrix specific. We add this search
to OSKTI’s tuning routine. Exhaustive prefetch distance
search is quadratic in time since we are searching over
all possible prefetch distances for the val array combined
with all possible prefetch distances for the col_ind array.
Thus, we limit our search space to bounds that allow the
search to run fast while covering all the interesting values
(powers of 2 up to the maximum number of threads stud-
ied). Future work can include a heuristic or benchmark
that calculates these values more efficiently. Table [3|sum-
marizes the architecture specific intrinsics used as well as
the bounds set on prefetch distances.

If the prefetch distance for either or both arrays is 0,
we eliminate the prefetch instructions for the appropriate
arrays. Therefore, we write four versions of each kernel:

e kernel_VPO_CPO: No prefetch instructions in code.

e kernel_VPO_CPY: Prefetch instructions only for col-
umn index array with amount Y.

e kernel _VPX_CPO: Prefetch instructions only for val
array with amount X.

e kernel VPX_CPY: Prefetch instructions for val array
with amount X and column index array with amount
Y.

This methodology allows us to keep traffic to instruc-
tion caches to a minimum.

If available, we give the hardware a hint indicating that
the prefetched values will not be used again and can be
evicted directly out of the entire cache hierarchy instead
of being relegated to a lower level.

It is important to note that the new search over prefetch
distances adds a significant overhead to the tuning that
takes part within OSKI. According to [20]], OSKTI’s tun-
ing (heuristics for register blocking, currently without
prefetch distance tuning) takes the time it would take to
perform approximately 40 matrix vector multiplies. The

prefetch distance tuning performs an exhaustive search
and performs 256 matrix vector multiplies and chooses
the best combination. We leave the development of an
efficient heuristic to calculate the prefetch distances to fu-
ture work.

Algorithm 2

Software Prefetched CSR Algorithm

Here, we prefetch the val array by pref_v_amt and the ind
arry by pref_i_amt

Require: val: nonzero values in A
Require: ind: column indices of values in A
Require: ptr: pointers to row starts in A
Require: z: source vector array
Require: y: destination vector array
Ensure: Yfinal = Yinitial +Axz

1: for all row ¢ do

2 temp; < 0

3 for j=ptr[i] to ptr[i + 1] - 1 do

4 temp; «— temp; + val[j] x z[ind[j]]
5 pref_intrinsic(pref_v_amt+&val[j])

6: pref_intrinsic(pref_i_amt+&ind][j])

7:  end for

8 yli] — yli] + temp;

9: end for

4.1.5 Software Pipelining

We observe that the multiplication in the inner loop of
the CSR algorithm requires two memory accesses: val[j]
and x[ind[j]]. In addition, x[ind[j]] is an indirect access
which costs the algorithm even more cycles per iteration.
By explicitly software pipelining the fetching of these val-
ues across three iterations of the inner loop, it is possible
to increase the L1 Cache to Register and Functional Unit
throughput.

Algorithm [3] shows how the inner loop of the CSR Al-
gorithm can be software pipelined. It is necessary that
the arrays are padded with 0’s at the end in order for the
last iteration of the loop to execute correctly. Also, note
the way in which the algorithm exploits the fact that the
arrays are all continuous by pipelining the values across
TOWS.

In the presence of explicit software prefetching, this op-
timization does not help SpMV performance significantly
since the bottleneck on most architectures is the memory-
to-cache bandwidth and not the cache-to-register band-
width.



Algorithm 3

Software Pipelined CSR Algorithm

Here we pipeline across single iterations of the inner loop
Require:
Require:

val: nonzero values in A
ind: column indices of values in A
Require: ptr: pointers to row starts in A
Require: z: source vector array
Require: y: destination vector array
Ensure: yfinat = Yinitiat + A X x

1: valy < val[0]

2: x1 — z[ind[0]]

3: indz «— ind[1]

4: for all row i do

5: temp; < 0

6:  for j=ptr[:] to ptr[¢ + 1] - 1 do
7: temp; «— temp; + val1 X x1
8: valy — vallj + 1]

9: 1 — z[inds]

10: inds «— ind[j + 2]

11: end for

12: yli] « y[i] + temp;

13: end for

4.1.6 SIMDization

It is possible to use the 128b SIMD registers on most ar-
chitectures to reduce the number of instructions for data
parallel applications. By using SSE instructions, four in-
tegers (4x32b=128b) or two doubles (2x64b=128b) can
be operated upon with a single instruction. [24] showed
that implementations of SpMV that used the SSE intrin-
sics performed significantly better than straight C code on
the Intel Clovertown but these codes did not improve per-
formance on the Opteron based architectures.

4.1.7 Index Compression

For a matrix whose submatrix or cache block span fewer
than 64K columns, the column indices can be represented
using 16b integers rather than the default 32b integers.
[24]] shows that such an optimization provides upto a 20%
reduction in memory traffic for some matrices, which
translates up to a 20% increase in performance. [23]]
presents delta encoded compression (DCSR) and row-
pattern based compression (RPCSR) to accelerate SpMV
performance but we do not study these more general ap-
proaches.

4.1.8 Array Padding

This simple optimization makes sure that all matrix struc-
tures that are allocated so that the pointers are aligned

to the L2 cache bank size. Doing this avoids cache and
bank conflicts and increases performance due to aligned
prefetches.  [24] demonstrated this optimization to in-
crease performance by as much as 10%.

4.2 Parallel Optimizations

The optimizations described in this section are applied at
the pOSKI layer.

4.2.1 Data Decomposition

The first step in a parallel SpMV kernel is decomposing
the matrix across the available threads where each thread
is assigned a different subblock of the matrix. Finding the
optimal layout of data across these threads turns out to be
a non-trivial task because of the large number of possibil-
ities. For a machine that supports 32 concurrent hardware
threads, the possible divisions of the threads across the
matrix are 1 X 32,2 x 16,4 x 8,8 x 4,16 x 2and 32 x 1.
We call the 1 x 32 layout column-blocked and the 32 x 1
layout row-blocked. Due to the significant time that an
exhaustive search over all these choices would take, many
current efforts completely ignore a search in this dimen-
sion and just divide the matrix across the rows or columns
(i.e., either the 32 x 1 or the 1 x 32 option).

Initial studies have shown that having more software
threads than the number of available hardware threads
often yields higher performance. Thus, we expand our
search space to include more software threads than the
number of hardware threads. Since this space is extremely
large, we search over all combinations of powers of 2 of
up to 64 software threads on the AMD Opteron based and
Intel Clovertown based architectures.

An important point to note is that a decomposition that
includes more than one thread in the column dimension
requires a reduction. All times reported for SpMYV in the
results section include the reduction time when applica-
ble.

Figure [2] presents a 4x2 decomposition of the illus-
trated 7x8 matrix. Each ‘x’ in the figure represents a
nonzero. Blank spaces represent zeros. Each colored sec-
tion represents a separate submatrix. Each submatrix is
operated upon by a separate software thread and there-
fore has its own instance of OSKI initialized. Since each
matrix is tuned separately, each can have a different regis-
ter blocking as well as prefetch distances (as explained in
Section4.1.4).

The decomposition takes place in a way to make sure
that each thread is load balanced by number of nonzeros.
pOSKI first blocks the matrix across available threads in



Figure 2: Example: A 4x2 Decomposition of a Matrix

row dimension (4 in this case). Since there are 24 total
nonzeros, pOSKI assigns each of the row-blows 6 nonze-
ros. pOSKI then blocks across the available threads in
the column dimension. Thus, each row block can have its
own column block boundaries.

4.2.2 pBench: A Parallel Benchmark

pOSKI is built on top of OSKI: Each thread of pOSKI
invokes an SpMV call to an OSKI kernel in parallel. At
runtime, OSKI uses benchmark data that it collected at its
install time along with heuristics in order to determine the
best data structure and algorithm for the SpMV (Chapter
3, [19D).

OSKT’s install-time benchmarking is single threaded.
The installer gets all the machine’s resources to bench-
mark different features of the underlying architecture as
well as the performance of a single SpMV. Our hypothe-
sis is that in architectures with multiple cores sharing the
available bandwidth, this is not an accurate benchmark to
mirror the runtime environment (where pOSKI will have
multiple threads performing SpMV’s in parallel and thus
sharing the available bandwidth). Therefore, we propose
the following parallel benchmark:

e At install time, we will run multiple instances of
OSKTI’s benchmark — one in each thread. This will
mirror the execution of pOSKI. We will run all com-
binations of powers of two threads up till the num-
ber of concurrent software threads we wish to study.
E.g., on the AMD Santa Rosa, we will run 1, 2, ...,64
threads in parallel.

OSKTI’s interface allows us to override the default
benchmark data to use at runtime. We will load the
parallel benchmark data that we have collected into
each serial instance of OSKI. At runtime, OSKI will
choose the appropriate data structure and algorithm
for the submatrix in question based on this parallel
benchmark data.

10

4.2.3 NUMA-Awareness

Sockets in many modern architectures are designed
for cache coherent non-uniform memory accesses (cc-
NUMA). In ccNUMA, a locality domain is a set of
processor cores together with locally connected memory
which can be accessed without resorting to a network of
any kind. This is the kind of clustering found in two and
four socket AMD Opteron nodes. Modern operating sys-
tems are aware of the underlying hardware architectures
and allocate space for data following a ‘“first touch’ pol-
icy: they allocate space for the data closest to the thread
which initializes them. Thus, binding a thread to a spe-
cific core signals the hardware that the data that is used by
that thread should be kept in the DRAM closest to a given
locality domain. This is referred to as memory affinity.

For such NUMA architectures, we apply a set of
NUMA -aware optimizations in which we explicitly assign
each submatrix block to a specific core and node. We fol-
lowed the methodology in [24] to ensure that both the
thread and its associated submatrix are mapped to a core
(process affinity) and the DRAM (memory affinity) prox-
imal to it. The optimal affinity routines varied by archi-
tecture and OS. [24] found the Linux scheduler [[11] to
perform well on the Opteron-based architectures.

However, the problem is not completely fixed by bind-
ing initial allocations. The problem lies within the im-
plementation of malloc(). malloc() first looks for free
pages on the heap before requesting the OS to allocate
new pages. If available free pages reside on a different lo-
cality domain, malloc() still allocates them, violating the
NUMA-aware invariants.

Our solution is to allocate one large chunk of memory
per locality domain at the time pOSKI is initialized. All
allocations and deallocations from this point come from
this privately managed heap.

Our biggest challenge was to propagate the NUMA-
aware optimizations to the OSKI layer. While the pOSKI
layer respected the memory affinity of a given thread and
submatrix, routines such as oski_TuneMat() are malloc()
and free() intensive. In order to make them NUMA-aware,



we append the oski_matrix type with one required param-
eter, three optional functions and one optional parameter:

e Required: has_matspec_allocators: This parameter
is 0 if there are no matrix specific allocators/deallo-
cators. A value of 1 corresponds to the rest of the

items in this list having non-null values.

void* matspec_Malloc(size_t size, void* mat-
spec_info): This optional function will be specific to
the matrix it is a part of. Thus, each matrix can have
a different allocator — depending on whether it was
created from pOSKI or from another entrance point.

void* matspec_Realloc(void* ptr, size_t size, void*
matspec_info): Akin to the matspec_Malloc().

void matspec_Free(void* ptr): Akin to the mat-

spec_Malloc().

void* matspec_info: This variable pointer can point
to any auxiliary data that matspec_Malloc() might
need. In pOSKT’s case, this pointer will point to an
integer that has the value corresponding to the Id of
the thread that will execute the oski_MatMult() for
the given matrix. Default Value: NULL.

After matrix creation, any allocation and deallocation is
done using the allocators and deallocators associated with
the matrix, if available (has_matspec_allocators == 1). If
there is none available, OSKI defaults will be used.

5 MPI-pOSKI

Two common methods of programming parallel applica-
tions are using Pthreads and MPI tasks. While Pthreads
target shared memory architectures, MPI applications tar-
get distributed memory architectures. The reason the
Pthreads model is not used on distributed memory archi-
tectures is because it does not provide for a way to send
and receive messages over the network — while MPI does.
The reason for not using MPI for both classes of archi-
tectures is that each MPI task has a higher overhead than
each Pthread. MPI libraries usually implement on-node
task communication via shared memory, which involves
at least one memory copy operation (process to process).
On the other hand, there is no intermediate memory copy
required because threads share the same address space
within a single process. Therefore, Pthreads generally re-
quires less memory bandwidth than MPI, and is thus nor-
mally faster. [2]].
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We built an MPI layer on top of pOSKI to serve two
purposes: (1) to demonstrate how to use the pOSKI li-
brary and (2) to examine whether it is worth having multi-
ple MPI tasks within a node. Future work can include ex-
amining the balance of MPI tasks and Pthreads on multin-
ode multicore architectures. We decompose the matrix
across MPI tasks in a way akin to the data decomposi-
tion for the pOSKI layer, explained in Section 4.2.1] A
separate instance of pOSKI does the SpMV on each sub-
matrix. The pOSKI layer then hierarchically decomposes
its submatrix into further submatrices which are tuned for
SpMV by the OSKI layer.

Section [/.2| presents the results of examining the effect
of tuning the balance between Pthreads and MPI tasks.

6 Experimental Setup

6.1 Architectures Studied

Throughout this work, we target systems that are either
single node multicore architectures or multinode architec-
tures with each node containing multiple cores.

The following two subsections describe the architec-
tures that we use in our study. Appendix [C| has Figures
showing the layout of these architectures.

Before we explain the architecures, we define our ter-
minology.

e Core: Smallest processing element.

e Socket: One or more cores on one chip. Defined
by having a shared memory on chip, with uniform
access time.

Node: One or more sockets with locally connected
memory that can be accessed without resorting to
a network of any kind. E.g. Intel Clovertown uses
a Front Side Bus and AMD Santa Rosa uses the
Hypertransport. A core accessing memory on a re-
mote socket might demonstrate Non Uniform Mem-
ory Access (NUMA) times.

Full System: One or more Nodes. Nodes are con-
nected by a high-bandwidth, low-latency switching
network such as Infiniband or Myrinet.

6.1.1 AMD Santa Rosa (dual socket x dual core)

The first architecture we study is the Opteron 2214. Each
core in this dual-core design operates at 2.2 GHz with a
peak double-precision floating point performance of 4.4
GFlop/s per core or 8.8 GFlop/s per socket. Each socket



’ No. ‘ Name Dimensions NNZ NNZ/Row | Symmetric Notes
1. webbase-1M 1000005 x 1000005 3105536 3.11 No ‘Web connectivity matrix
2. mc2depi 525825 x 525825 2100225 4.0 No Ridler-Rowe Epidemic
3. marca_tcomm 547824 x 547824 2733595 5.0 No Telephone Exchange
4. scircuit 170998 x 170998 958936 5.61 No Motorola Circuit Simulation
5. shipsecl 140874 x 140874 3977139 28.21 Yes Ship section/detail
6. qcd5-4 49152 x 49152 1916928 39 No Computing Quark Propagators
7. pdblHYS 36417 x 36417 2190591 60.12 Yes Protein Data Bank: 1HYS
8. rail4284s 4284 x 1092610 11279748 2632.9 No Railway Scheduling
9. raefsky4 19779 x 19779 1328611 67.2 No Buckling Problem
10. exl1 16614 x 16614 1096948 66.0 No 3D Steady Flow Calculation
11. bibd 22_8 231 x 319770 8953560 38760 No Balanced incomplete block design
12. dense2 2000 x 2000 4000000 2000 No Dense Matrix in Sparse Format

Table 2: Matrix Suite Studied: Sorted in order of increasing density

Architecture | ISA | Compiler Optimizations Max (val, col_ind) Intrinsic Used
prefetch distances

AMD x86 gce -O4 -march=opteron -mtune=opteron (1024, 256) _mm_prefetch()
Santa Rosa -msse3 -m64 -funroll-loops

AMD x86 gce -O4 -march=opteron -mtune=opteron (1024, 256) _mm_prefetch()
Barcelona -msse3 -m64 -funroll-loops

Intel x86 gce -04 -march=nocona -mtune=nocona (1024, 256) _mm_prefetch()
Clovertown -msse3 -m64 -funroll-loops

Table 3: Options Chosen on Architecture Suite

includes its own dual-channel DDR2-667 memory con-
troller as well as a single cache coherent HyperTransport
(HT) link to access the other sockets cache and mem-
ory. Each socket can thus deliver 10.6 GB/s, for an ag-
gregate NUMA (non-uniform memory access) memory
bandwidth of 21.3 GB/s for the dual-core, dual-socket
SunFire X2200 M2 examined in our study.

6.1.2 AMD Barcelona (dual socket x quad core)

The newest of AMD’s family of multicores, the AMD
Barcelona, is made of cores that operate at 2.3 GHz with
a peak double-precision floating point performance of 9.2
GFlop/s per core or 36.8 GFlop/s per socket. Each socket
includes its own dual-channel DDR2-667 memory con-
troller as well as a single cache coherent HyperTransport
(HT) link to access the other sockets cache and mem-
ory. Each socket can thus deliver 10.6 GB/s, for an ag-
gregate NUMA (non-uniform memory access) memory
bandwidth of 21.3 GB/s for the quad-core, dual-socket
machine examined in our study.

6.1.3 Intel Clovertown (dual socket x quad core)

The Clovertown is Intel’s quad-core design. It con-
sists of two dual-core Xeon chips paired onto a single
multi-chip module (MCM). Each core is based on In-
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tels Core2 microarchitecture (Woodcrest) and runs at 2.33
GHz. The peak double-precision performance per core is
9.3 GFlop/s.

Each socket has a single front side bus (FSB) running at
1.33 GHz (delivering 10.66 GB/s) connected to the Black-
ford chipset. In our study, we evaluate the Dell Pow-
erEdge 1950 dual-socket platform, which contains two
MCMs with dual independent busses. Blackford provides
the interface to four fully buffered DDR2-667 DRAM
channels that can deliver an aggregate read memory band-
width of 21.3 GB/s. Unlike the AMD Santa Rosa, each
core may activate all four channels, but will likely never
attain the peak bandwidth. The full system has 16MB of
L2 cache and 74.67 GFlop/s peak performance.

Compiler Options: Given that there are multiple com-
pilers per architecture, each with many options, we sum-
marize the options we chose for our study in Table

6.2 Matrix Test Suite

In order to evaluate the performance of our autotuner
on the architectures described above, we have chosen 12
matrices from Tim Davis’ University of Florida Collec-
tion [4]. This diverse suite of matrices exhibits varying
properties relevant to SpMV performance including ma-
trix dimension, dimension ratios, non-zeros per row, the



existence of dense block substructure, symmetry, and de-
gree of non-zero concentration near the diagonal. These
properties enable us to better understand the advantages
and disadvantages of the different algorithms and opti-
mizations that we have described and applied and how
they relate to the underlying architecture.

The properties of the 12 matrices that were chosen are
referenced in Table[2] Spyplots for all the matrices can be
found in Appendix [D]

Previous work [6] has described a method for evaluat-
ing SpMV implementations efficiently while taking into
account factors such as the data structure used for the
sparse matrix, its density of nonzero entries, its dimen-
sions, and even its specific pattern of nonzero entries (tak-
ing into account distance from the diagonal).

However, we choose to exhaustively search over the op-
timizations described in Section 4 and present our results
in Section[7} While collecting data in this manner is more
consuming, it provides many insights not easily seen oth-
erwise.

6.3 Timing the Routines

We measure the total time it takes to calculate the Sparse
Matrix Vector product in milliseconds using the built-in
hardware performance counters of the system. Our results
report the performance in MFlop/s for each combination
of optimizations. Each result reported is the median value
from 100 runs with a warm cache.

7 Results

We divide our results section into two subsections: pOSKI
results and MPI-pOSKI results. The focus of this thesis is
pOSKI and thus we will focus on the first subsection. The
MPI-pOSKI layer was built mainly as a way to demon-
strate the use of the pOSKI library as well as to justify
future work in order to accelerate SpMV on distributed
memory multinode, multicore architectures.

7.1 pOSKI

In this section, we present the SpMV performance for our
matrix suite on the architectures described above. We
compare our implementation to the implementation by
Williams, et.al. [24] since we have tried to include all
of their important optimizations in this version of pOSKI.

Like [24], we present SpMV performance using a
stacked bar format as shown in Figure [3] Each segment
corresponds to a individual trial of all optimizations up
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to that point rather than to components of a trial with all
the the optimizations. In addition, we present heatplots
for each matrix showing the performance of the different
decompositions in Appendix [E]

Before presenting the performance results, we discuss
the characteristics of three matrices that we choose to fo-
cus on. We discuss how we expect each matrix to perform
given the structure of our SpMV kernels.

7.1.1 Performance Impact of Matrix Structure

While we present data from all 12 matrices in our suite,
we will focus on three cases that make for interesting case
studies.

e Matrix 1: This is the sparsest of matrices in our suite
and is an interesting example to focus on because it
has an average of only 3.11 nonzeros per row. OSKI
uses the CSR algorithm and its BCSR variants to per-
form the SpMV. The inner loop length of the kernels
is proportional to the number of nonzeros per row for
a given matrix. For these matrices, the kernel is not
able to amortize the loop startup overhead. Thus, we
can expect this matrix to perform poorly even if its
entire source vector fits in cache.

Matrix 8: This matrix contrasts Matrix 1 in that it
has over 2600 nonzeros per row. However, the as-
pect ratio for this matrix is extremely skewed. It has
4284 rows and 1092610 columns. Thus, the source
vector for this matrix cannot fit into the cache of any
of the machines we study. This matrix is thus very
amenable to cache blocking. However, since cache
blocking is not a default choice within OSKI1.0.1h,
we expect the data decomposition to compensate for
this by having multiple column threads.

Matrix 12: This matrix is a dense matrix (100%
nonzeros) stored in sparse format. Not only does this
matrix exhibit a high nonzero per row ratio, but it is
also the only matrix where the final flop:byte ratio
is nearly 0.25 (two floating point operations for each
eight bytes). It is also a matrix in which the vector
has high reuse. Thus, we can safely assume that this
matrix provides us with a performance upper bound
for sustained memory bandwidth.

In each of the following subsections (one per ar-
chitecture studied), we will compare the bandwidth
achieved for the dense matrix (Matrix 12) with the
bandwidth achieved for a modified stream bench-
mark [12] that does a dot product. We convert the



GFlop/s metric to a GB/s metric by taking into ac-
count the flop:byte ratio of 0.25 for the dense matrix.
This rationale is justified because we expect there to
be near perfect register blocking in which case the
bandwidth utilization due to the indices are in the
noise. Additionally, for this matrix, the entire source
and destination vector can fit in the cache of the ar-
chitectures studied.

7.1.2 AMD Santa Rosa Results

Figure[3|a) shows SpMV performance on the AMD Santa
Rosa. Each bar contains, at the bottom, a naive CSR
SpMV implementation. Each additional segment shows
the additional performance for adding the given opti-
mization. We also present the performance of Williams,
et.al.’s implementation for each matrix since we are
trying to emulate that performance while extending the
OSKI library.

What is clear from this figure is that the impact of each
optimization corresponds closely to the matrix structure.
By looking at our three focus matrices, the following re-
sults are clear:

e Register Blocking (delta between Naive CSR and
OSKI1.0.1h) helps Matrix 12 more than it does Ma-
trix 1 or Matrix 8 because it contains a clear dense
subblock structure.

An exhaustive search over all the data decompo-
sitions does not significantly improve performance
over a simple parallelization because of the high
level of source vector reuse and high presence of
dense subblocks. In addition, the source vector for
the SpMV on this matrix is only 16k in size and can
therefore fit in the Santa Rosa’s IMB L2 cache with-
out the presence of any decomposition in the column
dimension.

Data Decomposition helps the performance of Ma-
trix 8 significantly because of the dramatic aspect ra-
tio of this matrix. Since OSKI does not cache block
the matrix by default, performance is improved sig-
nificantly by a decomposition in the column dimen-
sion. The heatplot in Figure [§(h) shows that the
most effective data decomposition for this matrix is
2x8. The performance of a fully optimized pOSKI
is significantly higher than that of Williams, et.al.
because their search space does not include decom-
position in the column dimension.

e The parallel benchmark helps Matrix 12 the most
(out of our three focus matrices) because SpMV
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on this matrix saturates the available memory band-
width (due to the high flop:byte ratio). The paral-
lel benchmark helps OSKI’s heuristic choose a block
sizes for each submatrix that will efficiently split the
available bandwidth across the multiple threads.

Examining the performance of some of the other matrices
in our suite, we notice that prefetching helps the matri-
ces that have a high concentration of nonzeros around the
diagonal (Matrices 5, 6, 7, 9 and 10).

Matrices 1, 5 and 8 benefit significantly from the
NUMA optimizations. By looking at their heatplots in
Figure[8] we see that the optimal decomposition involves
having more software threads than the available hardware
threads. In addition, all of these matrices have source vec-
tors that are larger than the IMB L2 cache present on this
architecture. Thus, many of the source vector accesses are
serviced from memory making the NUMA optimizations
extremely important.

It is also important to understand why the performance
of pOSKI with all the optimizations does not perform
nearly as well as Williams, et.al. for two of the 12 matri-
ces (Matrices 9 and 10). The source vectors of both these
matrices have fewer than 64K elements. Matrix 9 has a
source vector that is 19779 elements long while Matrix
10 has a source vector that is 16614 elements long. Thus,
they are good candidates for the column index compres-
sion described in Section[d] By storing the column indices
as 16b integers rather than 32b integers, we can signifi-
cantly reduce the memory bandwidth utilization and thus
improve performance for this memory-bound kernel. This
optimization is currently not present within pOSKI and
we leave it as future work.

Looking at overall SpMV performance, the serial op-
timizations added improve performance by as much as
1.9x over OSKII.0.1h’s best imlementation with a me-
dian improvement of 1.4x. pOSKI provides up to a 9x
further improvement over the optimized serial codes with
a median improvement of 3.4 x. This superlinear speedup
can be attributed to the more efficient use of the memory
subsystem (reduced latency due to prefetching) as well as
more outstanding memory requests (due to more threads).

For the dense matrix, the best performing kernel only
utilizes 67.6% of available memory bandwidth. The mod-
ified stream benchmark that we ran was able to sustain
56.8% of the published bandwidth. We expect our kernels
to perform better than the benchmark because we have
explicit software prefetching which has shown to signif-
icantly mask the memory-to-cache latency on this archi-
tecture.



pOSKI Result Summary: AMD Santa Rosa
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pOSKI Result Summary: AMD Barcelona
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Figure 3: Effective pOSKI SpMV performance (not raw flop rate) on (a) AMD Santa Rosa and (b) AMD Barcelona
showing increasing degrees of serial optimizations — OSKI1.0.1h and Prefetching — as well as performance as paral-
lelism (Pthreads) and parallel optimizations are introduced — Data Decomposition, NUMA-Awareness and the parallel
benchmark. Williams, et. al. are denoted using diamond for comparison based on codes written for Supercomputing
2007 submission. Note: Bars show the best performance for the current subset of optimizations parallelism.
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pOSKI Result Summary: Intel Clovertown
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Figure 3: Effective pPOSKI SpMV performance (not raw flop rate) on (c) Intel Clovertown showing increasing degrees
of serial optimizations — OSKI1.0.1h and Prefetching — as well as performance as parallelism (Pthreads) and parallel
optimizations are introduced — Data Decomposition, NUMA-Awareness and the parallel benchmark. Williams, et. al.
are denoted using diamond for comparison based on codes written for Supercomputing 2007 submission. Note: Bars
show the best performance for the current subset of optimizations parallelism.
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7.1.3 AMD Barcelona Results

Given the similarity of this architecture with the AMD
Santa Rosa, we expect the performance characteristics to
be extremely similar as well. Examining Figure [3[b), we
notice two major differences: the impact of the NUMA
optimizations and the parallel benchmark are more accen-
tuated on this architecture.

The increased importance of the NUMA optimizations
can be attributed to the smaller L2 caches per core. Ad-
ditionally, the 8GB/s hypertransport in the Barcelona is
shared among 8 cores while it was only shared among 4
cores on the Santa Rosa. Thus, the penalty for not being
NUMA aware is higher.

This architecture has the same aggregate memory band-
width as the Santa Rosa but twice the number of cores.
This stresses the importance of managing memory-to-
cache traffic efficiently. This is exactly what the parallel
benchmark aims to target.

Looking at overall SpMV performance, the serial op-
timizations added improve performance by as much as
1.9x over OSKI1.0.1h’s best imlementation with a me-
dian improvement of 1.4x. pOSKI provides upto a 11.3x
further improvement over the optimized serial codes with
a median improvement of 4.5x. This superlinear speedup
can also be attributed to the more efficient use of the mem-
ory subsystem (reduced latency due to prefetching) as
well as more outstanding memory requests (due to more
threads).

For the dense matrix, the best performing kernel only
utilizes 91.4% of available memory bandwidth. The mod-
ified stream benchmark that we ran was able to sus-
tain 64.8% of the published bandwidth. Like the Santa
Rosa, performance for optimized SpMV on this machine
is higher than for the benchmark. It is also important to
note that both the benchmark and SpMV perform at higher
percentages of the published bandwidth on this architec-
ture than on the Santa Rosa because the available band-
width remains the same while the number of cores dou-
bles.

7.1.4 Intel Clovertown Results

Looking at the results in Figure [3c), we see that explicit
software prefetching does not help much on this architec-
ture. This can be attributed to the Xeon’s superior hard-
ware prefetching capabilities compared to the Opteron.
Unlike the two Opteron-based architectures, the heat-
plots in Figure|10[show that for ten out of the twelve ma-
trices in our matrix suite decompositions in the column di-
mension do not provide optimal performance. This is be-
cause the Clovertown has 2MB of L2 cache per core and
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thus most of the source vectors can fit in this cache. Ad-
ditionally, for two of the matrices, the optimal decompo-
sition only has four threads — four less than the number of
hardware available threads! Results from [24] show that
this is due to the fact that using just two cores on a socket,
rather than all four, attains a significant fraction of the sus-
tainable Front Side Bus(FSB) bandwidth. Thus, there is
little benefit that the additional computational power can
add for our memory-bound kernel.

As expected, we do not see much benefit from the
NUMA optimizations because the 8 cores share a unified
memory. Since all communication between the sockets as
well as between memory and each socket’s caches goes
through the same FSB, we expect performance to be ex-
tremely limited by the available bandwidth — and therefore
expect that the parallel benchmark optimization to help a
lot. The fact that it does not help on most of the matrices
is surprising and will be the focus of further exploration.

Given the large caches as well as fast cores on the
Clovertown, it is surprising that it performs significantly
worse than the Opteron-based Santa Rosa architecture.
The serial optimizations added improve performance by
as much as 1.24x over OSKI1.0.1h’s best imlementation
with a median improvement of 1.1x. pOSKI provides
upto a 7.2x further improvement over the optimized se-
rial codes with a median improvement of only 2.8 x. Un-
like on the two Opteron-based architectures, we do not
see superlinear speedups on this architecture because of
the bandwidth limitations of the FSB on this architecture.

For the dense matrix, the best performing kernel only
utilizes 38.8% of available memory bandwidth. The low
bandwidth utilization is the reason SpMV on Matrix 12
on the Intel Clovertown performs significantly worse than
on the Santa Rosa even though it has 4.2x the peak flop
rate. The modified stream benchmark that we ran was able
to sustain 27.6% of the published bandwidth. As in the
case with the two Opteron-based architectures, the soft-
ware prefetching is the main reason that SpMYV is able to
sustain a higher bandwidth than the benchmark.

7.2 MPI-pOSKI

Appendix [F] contains heatplots representing the perfor-
mance for different hierarchical decompositions for our
three focus matrices on each of the architectures we are
examining. There are two numbers on each axis in these
heatplots. The outer number represents the decomposition
at the MPI-layer while the inner number represents the
decomposition at the pOSKI layer. Our hypothesis was
that the best performing decomposition would consist of
a single MPI task per node which controls one instance
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Figure 4: A Comparison of the three SpMV systems discussed on our architecture suite.
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of pOSKI. In addition, we hypothesized that using MPI
within a node will add significant overhead and thus not
perform as well as pOSKI or Williams, et.al.

Figure 4] compares the three SpMV systems that we
have discussed: Williams, et.al., pOSKI and MPI-
pOSKI. Clearly, the performance of MPI-pOSKI is not at
par with the other two systems. However, it is important
to remember that MPI-pOSKI was not intended for use on
single node, shared-memory systems.

Examining the heatplots in Appendix[F] we can see that
the value of this exercise is in the realization that the op-
timal number of MPI tasks per node is not always 1, as
we had hypothesized. For Matrix 1 (extremely sparse),
the optimal number of MPI tasks is greater than 2 on the
AMD Santa Rosa, 4 on the AMD Barcelona and 8 on the
Intel Clovertown.

The contribution from this study is justifying an ex-
haustive search over multiple MPI tasks per node for a
system designed for multinode, distributed memory archi-
tectures.

8 Conclusions

We have developed and presented pOSKI and shown the
impact of the many serial and parallel optimizations on a
hierarchically decomposed SpMV. Our results show that
significantly higher performance improvements can be at-
tained through multicore parallelizations, rather than se-
rial code or data structure transformations. This outcome
is very heartening given the trend towards an increasing
number of cores per chip with a relatively constant per
core performance [1]].

Compared to a naive implementation, the serial op-
timizations provide a 1.45x median speedup on the
Opteron, 1.35x median speedup on the Barcelona and a
1.14x median speedup on the Clovertown. Compared to
a naive implementation, the serial and parallel optimiza-
tions together provide a 5.40x median speedup on the
Opteron, 7.20x median speedup on the Barcelona and a
3.66x median speedup on the Clovertown.

We have demonstrated the value of an exhaustive search
over the possible data decompositions for a given number
of threads and how it can boost performance by more than
20% for some matrices.

We have shown how the parallel benchmark helps
OSKT’s heuristic choose register block sizes for each
submatrix that efficiently splits the available bandwidth
across the multiple threads. This improves performance
on matrices with high flop:byte ratios — matrices which
tend to saturate an architecture’s available memory band-
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width.

Finally, our study compares a Pthreads-only implemen-
tation to a hybrid MPI-Pthreads implementation within a
shared memory machine. Although the Pthreads-only im-
plementation clearly beats the hybrid implementation for
the single node case, the lesson that it is beneficial to have
multiple MPI tasks within a node will help focus future
studies that target distributed memory multinode multi-
core architectures.

9 Future Work

In addition to adding the remaining optimizations studied
in [24]], the development of a heuristic to calculate op-
timal prefetch distances would increase tuning efficiency
within OSKI1.1.

There are two studies that we leave to future work at
the MPI layer:

e Study the effect of overlapping computation and
communication between nodes. While each node
computes a given part of the destination vector, we
can start reducing a previously computed part of the
destination vector using asynchronous sends. We hy-
pothesize that this is an example of a situation where
having more software threads than the number of
available hardware threads can be used efficiently.

Study whether there are potential performance gains
by assigning some of the threads (or cores) to only
handle sending/receiving of messages, and explor-
ing if the communication can be handled in a coordi-
nated asynchronous manner. We expect such an op-
timization to work well on architectures where there
are a high number of hardware threads available per
node (e.g. Sun T5140 T2+ [Victoria Falls]).

Finally, it would be of great use to the extended paral-
lel computing community if libraries similar to OSKI and
pOSKI were developed for other important computational
kernels.
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APPENDIX

A The Blocked Compressed Sparse Row Data Structure and Algorithm

3% 3 Register Blocking Example 3% 3 Register Blocking Example 3% 3 Register Blocking Example

20 30 40 50 0 10 20 30 40 50 0 10 20 30 40
688 true non-zeros 688 true non-zeros (688 true non-zeros) + (383 explicit zeros) = 1071 nz

0 10

Figure 5: Register Blocking Example: After breaking a matrix into rxc blocks, we may need to fill the blocks with
explicit 0’s to store them as dense subblocks.

This extension of the CSR data structure and algorithm described in Section [2] aims at reducing memory traffic.
Figure |§| shows how a matrix can be blocked at the register level. Given a matrix, we break it into r x ¢ block
submatrices. For each block, we only store one column-index rather than one per non-zero. The penalty paid is the
inclusion of the explicit zeros that are illustrated in red in Figure 5] In addition to reducing memory traffic in the
column-indices array, this optimization also increases temporal reuse of the source vector. This enables us to reduce
the number of irregular source vector accesses that has been shown to be a bottleneck in previous studies [7, [19].
Finding the optimal rxc blocking efficiently can be done using a fill-ratio based heuristic. For an in-depth treatment
of this, please refer to [19].

Sample code for a 2x3 is shown in Algorithm 4]

Algorithm 4 A 2x3 BCSR Algorithm

Require: val: nonzero values in A
Require: ind: column indices of blocks in A
Require: ptr: pointers to block row starts in A
Require: z: source vector array
Require: y: destination vector array
Ensure: ytinai = Yinitiat + A X
1: for all block-row i do
2: temp; — 0
tempas «— 0
for j=ptr[¢] to ptr[i + 1] - 1 do
temp1 «— temp1 +val[j *2%x3+0
tempy — tempr +val[j x2%3+1
temp1 < tempr +val[j 2% 3+ 2
tempy «— tempz +val[j 2% 3+ 3
tempa — temps + val[j * 2% 3+ 4
10: temps «— temps +val[j 2% 3+ 5
11:  end for
12: yli x 2] — y[i * 2] + temp:
13: ylix2+1] — y[i x2+ 1] + tempa
14: end for

x z[ind[j] + 0]
x zfind[j] + 1]
x z[ind[j] + 2]
x z[ind[j] + 0}

]

D A

x zfind[j] + 1
x z[ind[j] + 2
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B pOSKI API

This section describes the pOSKI v1.0 APL

/3% 3k sk sk sk ok sk sk ok sk sk sk ok sk K sk k sk ok ok sk Kk k sk sk kK sk ok sk k sk sk sk ok sk ok sk ok sk ok sk ok sk ok sk ok ok ok ok ok K ok ok

*
*
*
*
*
*
*
*
*
*
*

*

poski_Init: This function initializes pOSKI as well as
OSKI. It creates all the worker threads
and puts them to sleep.
charx pbenchFN(in): If using parallel benchmark data,
initialize OSKI with a path to appropriate
data. NULL value will use OSKI’s default
benchmark data.

Note: the pbenchFN argument will be removed in
pOSKI vl.1. pOSKI will keep track of pbench data
files upon installation and will use the
appropriate one without user input.

sk sk ok ok ok ok ok ok ok ok ok k okok ok ok ok ok sk ok ok skok sk ok ok ok ok ok skok sk skok ok ok ok ok ok ok ok ok Kok sk ok ok ok ok ok ok /
void poski_Init(charx pbenchFN);

/% 3k sk sk sk ok sk sk ok sk ok ok ok ok sk ok sk ok sk k ok ok kK ok sk sk ok sk ok sk ok ok sk sk ok sk ok sk ok ok ok sk ok sk ok sk ok ok ok sk ok K ok ok ok

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*

poski_ParallelizeMatrixAndSourceVector: This function is
where the majority of pOSKI’s value is. This
function decomposes the matrix into
RThreads x CThreads submatrices. Each submatrix
also has its associated partial copies of source
and destination vector allocated.
In vl.1, the exhaustive search will occur here.

uint32_t %P, wuint32_t xC, doublex V, uint32_t NRows(in):
Matrix in CSR format to be parallelized.

doublex X: source vector

doublex Y: destination vector

uint32_t NRows: Number of rows in matrix

uint32_t NCols: Number of columns in matrix

uint32_t RThreads: Row dimension for decomposition

uint32_t CThreads: Column dimension for decomposition

sk sk ok ok ok ok ok ok ok ok kok kok Kok ok ok ok sk ok ok ok Kok ok ok ok sk ok ok ok Kok ok ok ok ok ok ok ok ok Kok sk ok ok ok ok ok ok /
POskiMatrix* poski_ParallelizeMatrixAndSourceVector

(uint32_t *xP, uint32_t %C, doublex V,
doublex X, doublex Y,

uint32_t NRows, uint32_t NCols,
uint32_t RThreads, uint32_t CThreads);
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/3 3k K ok ok ok ok K ok ok ok ok K ok oK K K K kKK KK K oK K KK K K K K KK KK K oK K KK K oK K KK KK K K K R K Kk K
* poski_TuneMatrix: Tunes each submatrix within POskiSpA

* separately using OSKI.
* POskiMatrixx POskiSpA(in): Matrix created using
* poski_ParallelizeMatrixAndSourceVector ().

ko ok ok ok oK oK oK ok ok ok K ok Kk ok ok ok ok ok ok oK oK oK oK ok o K ok Kk kR ok ok ok ok ok oK oK ok ok ok o ok ok Rk ok kR ok ok sk ok k ok k /)

void poski_TuneMatrix (POskiMatrix* POskiSpA);

/3% kK sk ok ok ok K koK ok ok K ok oK K KK ok oK KK K oK K K oK K oK K K K K KK K oK K KK K oK K KK KK K K K R K Kk K
* poski_MatMult: Performs SpMV given parallelized matrix,
* source and destination vectors within POskiSpA

* along with parameters alpha and beta.

* POskiMatrix* POskiSpA(in): Matrix created using

* poski_ParallelizeMatrixAndSourceVector ().
* double alpha(in)
* double beta(in)
*
*

SpMV Operation: $y \leftarrow \alpha y + \beta x$
*
**********************************************************/
void poski_MatMult(POskiMatrix* POskiSpA,
double alpha, double beta);

/3% 3k K sk ok ok ok K ok ok ok ok K ok oK K oK K ok oK KK K oK K KK K oK K K oK K K K K oK K KK K oK K KoK K K K K K K Kk K
* poski_DestroyMatrix: This function destroys a pOSKI

* matrix by freeing the submatrices as well as any

* temporary arrays that are allocated.

* POskiMatrixx POskiSpA(in): Matrix created using

* poski_ParallelizeMatrixAndSourceVector ().

* Post Condition: POskiSpA is NULL

Kok oK oK oK oK oK K KK K oK K KK K K K KK K K K K oK R KK K oK K KK K oK K K K K oK KK KKK Rk KR KRk ok Rk ok /

void poski_DestroyMatrix (POskiMatrix* POskiSpA);

/3 ok ok ok ok ok ok K ok ok ok ok K ok oK K K K kKK KK K oK K KK K K K K KK KK K oK K KK R oK K KK R K K oK R ok Kk K
x poski_Close: Closes OSKI and makes sure all allocated

* memory is freed.

*

* Requirement: All matrices of type POskiMatrix have been
* destroyed by calling poskiDestroyMatrix ()

3k ok ok 3K 3K 3K 3K 3K 3K K 3 K K K K kK ok ok ok 3K 3K 3K 3K 3K 3K 3 K K K K Kk K ok ok oK 3K 3K 3K 3K 3K ok K K KKk kKoK ok ok sk sk ok k ok /

void poski-Close ();
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C Architecture Illustrations
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Figure 6: (a) AMD Santa Rosa, (b) AMD Barcelona and (c) Intel Clovertown Architectures
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D Matrix Spyplots
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E pOSKI Data Decomposition Heatplots
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Figure 8: pOSKI Data Decomposition Heatplots for Matrix Suite on AMD Santa Rosa
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Figure 8: Continued pOSKI Data Decomposition Heatplots for Matrix Suite on AMD Santa Rosa
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Figure 9: pOSKI Data Decomposition Heatplots for Matrix Suite on AMD Barcelona
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Figure 9: Continued pOSKI Data Decomposition Heatplots for Matrix Suite on AMD Barcelona
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Figure 10: pOSKI Data Decomposition Heatplots for Matrix Suite on Intel Clovertown
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Figure 10: Continued pOSKI Data Decomposition Heatplots for Matrix Suite on Intel Clovertown
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F MPI-pOSKI Data Decomposition Heatplots

There are two numbers on each axis in these heatplots. The outer number represents the decomposition at the MPI-
layer while the inner number represents the decomposition at the pOSKI layer.
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Figure 11: MPI-pOSKI Data Decomposition heatplots for three focus matrices on AMD Santa Rosa. The outer axis
refers to the decomposition done at the MPI layer while the inner axis refers to the decomposition done at the pOSKI

layer.
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Figure 12: MPI-pOSKI Data Decomposition heatplots for three focus matrices on AMD Barcelona. The outer axis
refers to the decomposition done at the MPI layer while the inner axis refers to the decomposition done at the pOSKI
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Figure 13: MPI-pOSKI Data Decomposition heatplots for three focus matrices on Intel Clovertown. The outer axis
refers to the decomposition done at the MPI layer while the inner axis refers to the decomposition done at the pOSKI
layer.
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